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cont ras t  bu t  is c rys ta l - s t ruc ture  d e p e n d e n t  w h e n  the 
eye is used  to de t e rmine  changes  in image  contras t .  
Thus ,  quan t i f i ca t ion  of  image  in tens i t ies  s h o u l d  be 
used for accura te  c o m p o s i t i o n  d e t e r m i n a t i o n  by 
A R M .  Last ly ,  a l t h o u g h  this  s tudy  only  cons iders  sys- 
tems c o n t a i n i n g  two e lements ,  the results  ind ica te  
tha t  s imi lar  p r inc ip les  can  be used to in te rpre t  the  
cont ras t  in sys tems c o n t a i n i n g  c o m b i n a t i o n s  o f  three  
or more  e lements .  
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Abstract 

C z o c h r a l s k i - g r o w n  s i l icon crystals  of  a p p r o x i m a t e l y  
1 0 c m  d i a m e t e r  and  1 cm th ickness  have  been  
a n n e a l e d  at 1470 K in o rde r  to create a h o m o g e n e o u s  
defect  s t ructure ,  wh ich  is a bas ic  cond i t i on  for  all 
s tat is t ical  t r ea tmen t s  o f  ext inc t ion .  Abso lu te  va lues  

* On leave from Instituto de Fisica, Universidade Federal do 
Rio de Janeiro, 21910 Rio de Janeiro RJ, Brazil. 

of  the  in t eg ra t ed  ref lect ing power  of  the 220, 440 a n d  
660 ref lect ions have  been  m e a s u r e d  wi th  0-0392 
y - r a d i a t i o n  in symmet r i ca l  Laue  geome t ry  for  s ample  
th icknesses  be tween  1 a n d  3 cm. The  a m o u n t  o f  
ex t inc t ion  in the e x p e r i m e n t a l  da ta  varies  be tween  
y = 0.95 a n d  y -- 0.05. D a r w i n ' s  ex t inc t ion  t heo ry  has  
been  used  to descr ibe  the th ickness  d e p e n d e n c e  of  
the da ta  sets. Desp i t e  some sho r t comings  o f  the 
model ,  it is s h o w n  tha t  the  a s s u m p t i o n  of  a phys i ca l l y  
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unrealistic Lorentzian mosaic distribution models the 
effect of primary extinction in an extinction theory 
based on the energy-transfer model. The sharp central 
part of the Lorentzian distribution produces a reduc- 
tion of the effective sample thickness due to primary 
extinction, whereas the wings of the distribution 
dominate the correction for secondary extinction in 
the remaining part of the sample. A more flexible 
mosaic distribution function is proposed, which 
should be useful in cases of severe extinction. 

Introduction 

Today in most accurate structure refinements, the 
effect of extinction is corrected on the basis of an 
energy-transfer model presented by Zachariasen 
(1967) and Becker & Coppens (1974). The imperfec- 
tions in the crystal are described within Darwin's 
mosaic model using parameters for the average size 
of the perfect blocks, and the standard deviation of 
a Gaussian or a Lorentzian mosaic distribution which 
describes their angular misorientation. This approach 
has some basic limitations as discussed by Kato 
(1976, 1979, 1980a), who more recently developed a 
statistical dynamical diffraction theory (Kato, 1980b) 
which, in principle, covers the full range from 
dynamical to kinematical diffraction behaviour as a 
function of two correlation parameters r and E, the 
first describing short-range and the second long-range 
correlation. The relative merits of the two approaches 
to the extinction problem have been discussed by 
Becker & Dunstetter (1984). 

People have been puzzled by the fact that the 
assumption of a Lorentzian mosaic distribution 
within the conventional energy-transfer coupling 
model often leads to a better agreement between 
measured and calculated structure factors, although 
a Gaussian is the more likely distribution, except for 
crystals showing deep surface damage due to grinding 
(Boehm, Prager & Barnea, 1974). Only a few attempts 
have been made in the past to develop an extinction 
correction for samples with inhomogeneous defect 
structure (e.g. Mazzone, 1981), an aspect which will 
not be treated in the present paper either. In general, 
the full width at half maximum (FWHM) of the 
Lorentzian distributions as determined from the 
structure refinements is unrealistically small. 

In the present paper we want to demonstrate that 
the assumption of a Lorentzian mosaic distribution 
in the frame of an extinction theory based on intensity 
coupling only simulates the effect of primary extinc- 
tion which, in principle, is due to the coupling of 
wave amplitudes in the perfect mosaic blocks. The 
argument is based on Darwin's extinction theory 
which proved to be successful in the interpretation 
of the integrated reflecting power measured with ,/- 
radiation of wavelengths between 0.02 and 0.04 
(Schneider & Kretschmer, 1985; Schneider, J0rgensen 

& Shirane, 1986). The samples are annealed 
Czochralski-grown silicon crystals which are charac- 
terized by double-crystal y-ray rocking curves 
measured with 1.4" arc resolution, as well as by high- 
resolution X-ray topography and double-crystal X- 
ray rocking curves measured with 0.25" arc resolution 
(Schneider, Gongalves, Rollason, Bonse, Lauer & 
Zulehner, 1988). The crystals show highly homo- 
geneous defect structure. Using 0.0392 ,~ y-radiation, 
we measured the integrated reflecting power on an 
absolute scale for various sample thicknesses 
achieved by tilting the large disc-shaped crystals 
around the scattering vector. The thickness depen- 
dence of the measured integrated reflecting power 
was fitted by Darwin's extinction theory assuming a 
Gaussian or Lorentzian mosaic distribution, respec- 
tively, and by introducing an effective thickness, T~, 
smaller than the geometrical thickness, To, in order 
to parametrize primary extinction. 

Darwin's extinction theory 

According to De Marco & Weiss (1965), the 
integrated reflecting power for diffraction of ,/-rays 
in Laue geometry through a plane-parallel perfect 
single crystal is given by 

rolF'mle- WA 2 
R ~ n = T r V ~ - ~ i i ~ s ~ n 2 0 B  R ~idY"(Laue) (1) 

where ro is the classical electron radius, F~ is the 
real part of the structure factor, e -w the Debye- 
Waller factor, and Vce,, the volume of the unit cell. A 
represents the wavelength, and 0n is the Bragg angle. 
b represents the ratio of the direction cosines ,/o and 
,/n and is equal to unity for symmetrical Laue 
geometry. For diffraction experiments with ,/-radi- 
ation of wavelength of the order of 0.04 & on silicon 
crystals, R~aY"(Laue) is well approximated by 

2 A  

R~dY~(Laue)=½~rexp(-~ot/cosOB) I Jo(x)dx  (2) 
0 

with 

A =  r°lF'nle-WAt - t (3) 

vce,,(I,/o,/. I) '/2 tex. 

tXo=0.25 cm- '  is the linear attenuation coefficient 
measured with 0.0392 A ,/-radiation in silicon, and t 
represents the thickness of the crystal plate. Jo(x) is 
the zeroth-order Bessel function of the first kind. The 
justification of the approximations involved in deriv- 
ing (2) was discussed by Graf & Schneider (1986). 
The thickness t corresponding to ,4 = 1 is defined as 
the extinction length, tex,, which is inversely propor- 
tional to the structure factor and the wavelength. Thus 
the parameter A is a measure of the sample thickness 
in units of the extinction length. 
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In Fig. 1 the dynamical integrated reflecting power 
R~dy"(Laue) is plotted as a function of the parameter 
A together with the integrated reflecting power 

R~kin(Laue) = -n-A (4) 

calculated from kinematical theory for an ideally 
imperfect single crystal. 

Rk i .=  rolF',l e -wA 2 
n 7rVcet,(lb]) '/2 sin 20~ R~kin(Laue) 

=r~lF'HI2e-2W A 3 t 
2 V~. sin 208 cos O~ 

= Qt / cos  OB. (5) 

Because of the small Bragg angles, the polarization 
factor is well approximated by unity. For sample 
thicknesses t--- text/2 , both theories provide identical 
values for the integrated reflecting power and there- 
fore only for samples of thickness smaller than half 
an extinction length is it guaranteed that the diffrac- 
tion is free of extinction. Structure factors have been 
measured with synchrotron radiation of A =0.91 
on a 6 ~m CaF2 single crystal (Bachmann, Kohler, 
Schulz & Weber, 1985). Compared with a 90 I~m 
sample, extinction was very much reduced for the 
smaller crystal, which indicates that extinction-free 
diffraction may be obtained for such tiny crystals. On 
the other hand, even on larger crystals extinction can 
be excluded by working with shorter-wavelength radi- 
ation. In the case of silicon 220, one finds text/2-~ 
4.5 ixm for A = 0 . 9 1 / ~ a n d  --'100 i~m for h =0.0392 ~ .  
For the extinction correction, it is not the absolute 
size of the sample which is of importance, but its 
relation to the extinction length which depends on 
wavelength and structure factor. 

If the thickness of the perfect blocks in a mosaic 
crystal is larger than about one extinction length, part 

/ R ~  ~ =  ~ rA  

2 ° ; - ...... .....~. 
. . . . .  • ._ . . . .  , 2 _ _  _ _ ' . _  . . . .  _.'- _ _  _ 3 , . _ _  _ _ _ .~  21 ' ' ~ -  ' ~  

0 i T ; i i i t r , , i~ 

2 4 6 8 10A 

Fig. 1. Integrated reflecting power for symmetrical Laue geometry 
calculated from dynamical and kinematical diffraction theory 
for zero absorption as a function of the parameter A, which is 
a measure of the sample thickness in units of the extinction 
length. Because of the small Bragg angles for the diffraction of 
0-0392/~ y-radiation at low-order reflections, the polarization 
factor is very close to unity, and no fading of the Pendell6sung 
oscillations can be observed. 

of the block does not contribute to an increase of the 
scattered intensity as expected from kinematical 
theory, where the scattering power is proportional to 
the number of atoms in the crystal. This reduction of 
the integrated reflecting power of a mosaic block with 

okin is called primary extinction and can respect to ..H 
be visualized in an 'absorbing hole' model (Schneider, 
1977). Compared with the geometrical thickness To 
of the mosaic crystal primary extinction leads to a 
reduction of the sample thickness to be used in the 
expression for the calculation of the integrated reflect- 
ing power. 

Darwin's extinction theory starts from the intensity 
transfer equations (Laue geometry) 

dPo/d T = -/.to Po -  o.Po + O.PH 
(6) 

d PH / d T = - I.toPo + o.Po - o 'P.  

Po(T) and PH (T )  represent the power of the incident 
and diffracted beams, respectively, at a depth T, and 
/.to is the total linear attenuation coefficient. In sym- 
metrical Laue geometry, the length of the transmitted 
and the diffracted beam path is equal to To/cos 0s. 
For the coupling constant o- one obtains 

o.(to) = W ( t o ) R * H / i  (7) 

where [ is the mean block thickness and R*  rep- 
resents the integrated reflecting power calculated 
from dynamical theory for a perfect plane-parallel 
plate of infinite lateral extension and thickness t. 
W(to) is the mosaic distribution function. If t <- texff2, 
there is no primary extinction, R*  = R k~- , , and using 
the quantity Q defined in (5) one obtains 

o.(to) = W ( t o ) Q / c o s  OB. (8) 

The solution of Darwin's intensity transport 
equations leads to the following expression for the 
theoretical reflectivity distribution: 

rth(to) = PH(to)/[Po exp(-/xoT0/cos 0B)] 

= ½{ 1 - e x p  [-2o-(to ) To]}. (9) 

Kinematical diffraction theory assumes that d P ,  = 
o-Po d T  (/Xo=0), i.e. the attenuation of the incident 
beam due to diffraction as well as the possibility of 
multiple scattering is neglected. Equation (6) takes 
both effects into account, and the calculated reflec- 
tivity will be smaller than the kinematical value, which 
is visualized by expanding the exponential in (9) to 
second order: 

r , . ( o ~ )  ~-- o k i .  _ o k i n  ,,,H W(w)[1 , , u  W(to)]. (10) 

This reduction of the integrated reflecting power of 
~ k i n  i s  called secondary a real crystal with respect to , , n  

extinction. The kinematical limit is reached only if 
R k i n  

H W ( t o )  , ~  1 over the whole scan range. If primary 
extinction cannot be excluded, the geometrical 
sample thickness To in (9) should be replaced by an 
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effective thickness Te~< To, which has to be deter- 
mined together with the full width at half maximum 
(FWHM) of a Gaussian or Lorentzian mosaic distri- 
bution by fitting the model to appropriate experi- 
mental data. 

y-ray diffractometry 

Absolute values of the integrated reflecting power 
were measured in symmetrical Laue geometry using 
0.0392,~ y-radiation from ~92Ir (Schneider, 1983). 
The beam cross section was 2 x 4 ram, and the angular 
divergence is approximately 3.2' arc in the scattering 
and 6.4' in the vertical plane. In a double-crystal 
set-up (Schneider & Graf, 1986), the direct y-ray 
beam is further collimated to an angular divergence 
of 1.4" arc by diffraction from an internally strained 
silicon crystal. After subtraction of the linear back- 
ground, P~, the reflected intensity is normalized with 
the transmitted intensity measured in an angular 
range where no Bragg diffraction occurs. The reflec- 
tivity distribution so defined, 

P,-, ( ,,, ) - PB 
r (w)= (11) 

Po exp [-/xoTo/cos 0B]" 

can be directly compared with the theoretical reflec- 
tivity r,h(to) from (9), provided there is no deconvolu- 
tion problem. The samples are mounted in a large 
Huber X-q~ circle with the scattering vector parallel 
to the q~ axis so that the thickness of the sample can 
be varied by changing q~. In order to test extinction 
theories by means of y-ray diffractometry, large 
samples with a homogeneous defect structure are 
needed, and it turned out that annealed Czochralski- 
grown silicon crystals are well suited for such studies. 

Annealed silicon single crystals 

Disc-shaped single crystals of approximately 1 cm 
thickness have been cut from Czochralski-grown crys- 
tals of 10cm diameter produced by Wacker- 
Chemitronic, Burghausen, Federal Republic of Ger- 
many. All samples have been polished chemically. 
The growth direction was [001], the resistivity of the 
boron-doped crystals is 90 ~cm, they contain 7.7 × 
1017cm -3 oxygen atoms on interstitial and 0.2× 
10~7cm -3 carbon atoms on substitutional sites. 
Sample CZ 286.788/127/1T (in the following CZ-1T 
for short) was annealed for 8 h at 1470 K, sample 
2 8 6 . 7 8 8 / 1 2 7 / 2 T  (in the following CZ-2T) was first 
annealed for 2 h at 1020 K and subsequently for 8 h 
at 1470 K. 

During crystal growth the silica crucible partly 
dissolves into the silicon melt, and, subsequently, 
relatively large quantities of oxygen are incorporated 
into the growing crystal. In the dissolved state, these 
oxygen atoms occupy distorted bond-centred posi- 
tions. At temperatures above 820 K, oxygen forms 

precipitates as some form of silica. For annealing in 
the temperature range from approximately 920 to 
1050 K, the dominant precipitate morphology is rod- 
like (Tempelhoff, Gleichmann, Spiegelberg & Wruch, 
1979) and has been identified as coesite, a high- 
pressure form of quartz (Bourret, Thibault-Dessaux 
& Seidmann, 1984; Ponce & Hahn, 1984). The silicon 
matrix around the evenly distributed precipitates is 
strained. At temperatures higher than 1170 K the 
strain around the growing SiO2 precipitates can be 
released by plastic deformation which condenses to 
stacking faults, the edges of which are partial disloca- 
tion loops. Therefore annealed Czochralski-grown 
silicon crystals are well suited for extinction studies. 

The samples have been characterized by y-ray 
diffractometry, as well as by high-resolution X-ray 
topography (Schneider et al., 1988). Fig. 2 shows a 
double-crystal rocking curve measured with 0-0392 ,~ 
y-radiation and an angular resolution of 1.4" arc. 
After deconvolution its FWHM is of the order of 2" 
arc, and the shape can be well approximated by a 
Gaussian. 

Integrated reflecting power v e r s u s  sample thickness 

The integrated reflecting power was measured with 
0.0392 ,~ y-radiation in both annealed silicon crystals 
at reflections 220, 440 and 660 for sample thicknesses 
varying between 1 and 3 cm. For each sample thick- 
ness the kinematical integrated reflecting power was 
calculated, and in Fig. 3 the extinction coefficient 
yOb,( T~) = R ~  ( T , ) /  k,n R H (T i) is plotted as a function 
of Ti. The amount of extinction varies between y =  
0.05 and y-~0.95. The data from sample CZ-1T, 
annealed for 8 h at 1470 K, are more strongly affected 
by extinction than those from sample CZ-2T subject 
to a two-step anneal, i.e. 2 h at 1020 K and then 8 h 
at 1470 K. 

With a Gaussian or Lorentzian mosaic distribution, 
the integrated reflecting power R~C°r(T~) was calcu- 
lated by integrating (9) for 1 -< T, <_ 3 cm. In order to 

,/ 
..... 5 . . . .  

0.002 0.004 0"006 

Crystal rotation angle (") 

Fig. 2. Double-crystal y-ray rocking curve measured with 1.4" arc 
angular resolution at the 220 reflection of sample CZ-2T for zero 
tilt angle, i.e. the [001 ] growth direction is in the scattering plane. 
Sample thickness T o = 1 cm, wavelength A = 0.0392 A,, cross sec- 
tion of the incident beam 2 x 4 mm. 
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determine the FWHM of the mosaic distribution as 
well as the ratio T~n/To, the theoretical extinction 
factor y theo r (T / )  = R ~ / e ° r ( T i ) / R ~ n ( T i )  was imple- 
mented as a subroutine in the standard fit program 
M I N U I T  (James & Ross, 1975). The function mini- 
mized by this program is 

X 2 =  E ~ - i  - -  ~ - i  
i=1 go~ss  (12) 

where N is the number of observations, i.e. the num- 
ber of different thicknesses T~ for which the integrated 

Robs obs reflecting power --i was measured, and o-i is the 
standard deviation of ..jR °b~ essentially derived from 
counting statistics. The curves through the experi- 
mental data shown in Fig. 3 represent the best fit 
obtained for a Lorentzian mosaic distribution. 

The extinction parameters obtained by fitting Dar- 
win's extinction model with Gaussian or Lorentzian 
mosaic distributions to the six experimental data sets 
are summarized in Table 1. The quality of the fits is 
described as usual by the goodness of fit 

G O F = x 2 / ( N - p ) ,  (13) 

with N the number of observations and p the number 
of parameters, and the agreement factor 

R 100[X2/y~ (hobs, obs,21,/2 = •i I(ri ) j (14) 
i=1 

If we disregard for the moment the data sets showing 
the smallest and the largest amount of extinction, a 
Lorentzian mosaic distribution allows us to fit the 
data well without the necessity of introducing an 
effective sample thickness Teff< To. On the other 
hand, the values of the FWHM of the mosaic distribu- 

.~09 
08 

...., 
c o7 
~_ o6 

o ~ os u 

-'~ 03 
._  -~ o2 

O1 

0 

(660) 

(4z~O) 

(220) 

÷ 

i ' ' ~ ' 0 5 I i.5 2.5 

effective sample thickness {cm) 

Fig. 3. Ratio of  the measured integrated reflecting power and the 
corresponding value calculated from kinematical theory as a 
function of  sample thickness. The solid points represent data 
from sample CZ-2T (annealed for 2 h at 1020 K and subsequently 
for 8 h at 1470 K), the open points data from sample CZ-1T 
(annealed for 8 h at 1470 K). The solid lines represent the best 
fit of Darwin's extinction model using a Lorentzian mosaic 
distribution. The experimental data are corrected for absorption 
and time decay of the y-ray source. Cross section of the incident 
y-ray beam 2 x 4 mm, wavelength A = 0.0392/~. 

tion are of the order of 0.2" arc, which is nearly one 
order of magnitude smaller than the FWHM of the 
measured rocking curves. 

In addition, the shape of the measured rocking 
curves does not support the assumption of a Lorent- 
zian mosaic distribution in the extinction model. With 
the more realistic Gaussian mosaic distribution, the 
fits to the experimental data are of similar quality, 
but now an effective thickness of Tel r < To has to be 
introduced, which indicates that the diffraction is 
affected by primary extinction. The FWHM of the 
mosaic distribution is of the order of 1" arc and in 
better agreement with the experimental values. 

From an initial Lorentzian mosaic distribution of 
FWHM = 0.266" arc, the reflectivity distribution was 
calculated from (9) for silicon 220 and wavelengths 
between h =0.0392 A, sample thickness To = 1 cm. 
The results are shown in Fig. 4. In the case of h = 
0-0039 A extinction is very small and rth(to) is propor- 
tional to the mosaic distribution W(to), which 
describes the probability of finding regions in the 
crystal with lattice plane orientations between to and 
to + dto. The reflectivity distribution is centred on the 
Bragg angle, to0= 0B, and for negligible extinction 
the angular range [too-EL, to0+FL] represents 50% 
of the crystal volume, where EL is the half-width at 
half maximum of the Lorentzian. More generally, a 
partition ratio can be defined as the ratio of the 
reflecting power integrated in the limits of to = to0- EL 
and to = too + FL, and the integral over the full reflec- 
tivity distribution. If the wavelength and thus the 
amount of secondary extinction is increased, the 
reflectivity distribution in its central region rapidly 
reaches the value of 0.5, which is the maximum value 
for a non-absorbing crystal in Laue geometry. As 
shown in the inset of Fig. 4, for 3. = 0.0392 A 50% 
of the crystal volume contributes only about 10% to 
the total integrated reflecting power, which corre- 
sponds to a reduction of the active volume to about 
60% of the total. However, by fitting with a Gaussian 
mosaic distribution, the effective thickness was 
reduced to 0.275 To, i.e. twice as strong. This dis- 
crepancy is essentially due to the different normaliza- 
tions of the two distributions. If F (Gauss i an )=  
F(Lorentzian),  the integral over the Lorentzian is 
about twice that over the Gaussian so that one obtains 
for the leading term in (10) 

R~n( Lorentzian)-~ 2R~n(Gaussian)lrc=rL. (15) 

In the limit of small extinction, both expressions have 
to approach identical values, which implies that the 
effective thickness of the crystal with Gaussian 
mosaicity is half the value of that with Lorentzian 
mosaic distribution of the same half-width. 

Closer inspection of the data presented in Table 1 
reveals a number of inconsistencies in the extinction 
model discussed so far. The thickness dependence of 
the 220 integrated reflecting power measured for 
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Table 1. Values of the F W H M  of the mosaic distribution (AtoM) and the ratio of the effective to the geometrical 
sample thickness ( Te~/ To) obtained from fitting Darwin's extinction theory to the thickness dependence of the 

integrated reflecting power measured with 0-0392 A T-radiation at reflections 220, 440 and 660 (see Fig. 3) 

Sample CZ-1T is a Czochralski-grown silicon crystal annealed for 8 h at 1470 K, CZ-2T was first annealed for 2 h at 1020 K and 
subsequently for 8 h at 1470 K. The agreement factor, R, and the goodness of  fit, G a Y ,  are defined in the text 

Darwin 
(Lorentz) 

Darwin 
(Gauss) 

Reflection 660 660 440 440 220 220 
Sample 2T 1T 2T 1T 2T 1T 

Atom (") 0-563 (6) 0" 185 (2) 0-317 (2) 0" 139 (1) 0.266 (1) 0' 147 (7) 
Te./T O 1.0000 (4) l.O00 (2) 1"000 (6) 1"00 (2) l'O00 (6) 0"8] (7) 
R(% ) 4.2 2.3 2.5 1.7 1.4 1-7 
GaY 7.3 2.9 2.9 1.7 1.4 1.5 
AtoM(") 1"20 (1) 0.465 (8) 1"28 (2) 0"81 (1) 2"16 (2) 1"37 (2) 
Tell~To 1"0000 (4) 0"98 (2) 0-66 (1) 0.43 (1) 0"275 (4) 0"176 (5) 
R(%) 3-8 1"1 ].9 2.0 1.6 2.1 
GaY 5.9 0.7 1.7 2-4 1.9 2.3 

sample CZ-1T cannot be described by reducing the 
FWHM of the Lorentzian distribution. Primary 
extinction is too strong, and the effective thickness 
has to be reduced even for this model. It is not clear 
why the data taken at the 660 reflection of sample 
CZ-2T, which is affected least of all by extinction, 
cannot be described by the present extinction model. 
For each sample the three data sets were measured 
in the same crystal volumes, and one expects that the 
FWHM of the mosaic distributions obtained from 
the fit should be identical. The calculated values, 
however, vary by about a factor of two, which reflects 
a shortcoming of the model. On the other hand, the 
observed reduction of the effective thickness with 
decreasing order of reflection is expected from the 
model, because the extinction length is inversely pro- 
portional to the structure factor. 

FWHM : 0266"' 

as ~ / - 7 ~  (220) 
j 0 0392 

' ////l!tI-Ii .... 03  o Q01 002 003 00~ 

l'k ~ 039 

//ll l.t P 

01 

O0 
300 260 ]00 0 ]00 200 300 

crystal rotation angle (arc sec) 

Fig. 4. Reflectivity distribution calculated from Darwin's 
expression for secondary extinction only [equation (9)] for 
silicon 220, sample thickness T O = 1 cm, and a Lorentzian mosaic 
distribution of  FWHM = 0.266". The wavelength is varied in the 
range from 0.0039 to 0.0392 A, the wavelength of  the y-ray beam 
used to measure the data  shown in Fig. 3. The partition ratio 
shown in the inset is defined as the ratio of the reflectivity rth(tO) 
integrated in the limits of  ( to0-FL)<- to-<( too+FL)  and the 
integral over the full reflectivity distribution. FL is the half-width 
at half-height of  the Lorentzian mosaic distribution. 

Concluding remarks 

Despite the shortcomings of the extinction model 
applied to interpret the thickness dependence of the 
integrated reflecting power measured with 
0.0392 A T-radiation at the 220, 440 and 660 reflec- 
tions of two annealed Czochralski-grown silicon crys- 
tals, it has been shown that the assumption of a 
Lorentzian mosaic distribution models the effect of 
primary extinction in an extinction theory based on 
the energy-transfer model. The sharp central part of 
the Lorentzian produces a reduction of the effective 
sample thickness due to primary extinction, whereas 
the wings of the distribution dominate the correction 
for secondary extinction in the remaining part of the 
sample, active in the energy-transfer model. 

Fig. 5 shows that a Lorentzian distribution can be 
reasonably well reproduced by the sum of two 
Gaussians each normalized to 0.5, the Lorentzian 
being normalized to 1. Because there is no physical 
justification for assuming a Lorentzian mosaic distri- 
bution, its incorporation into the refinement corre- 

3.00 I Lorentzian 
2.50 ,/7 : 0.133" 

Gaussions 

2-00 g 

• c 1 . 5 0  

h5 
._u 

1.00 

0-50 

0.0 
-1.00 -0.80 -0-60 -0.40 -0.20 0.0 0-20 040 0-60 0.80 1-00 

tilt angle (arc sec) 

Fig. 5. Best fit of  the superposit ion of two Gaussians normalized 
to 0.5 to a Lorentzian normalized to 1. The latter is represented 
by the dots. FL and l ' o t ,  FG2 are the half-widths at half- 
maximum of the Lorentzian and Gaussian distributions, respec- 
tively. 
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sponds to the introduction of a second parameter, 
both being correlated by a ratio of approximately 4: 1. 

Qualitatively, the narrow Gaussian models primary 
extinction and the four-times-wider Gaussian models 
secondary extinction. There is no physical reason for 
the constraint of the ratio of 4:1 for the half-widths 
of the two Gaussians as imposed by the assumption 
of a Lorentzian mosaic distribution. The model 
should become much more flexible if the ratio of the 
half-widths is a free parameter in some fixed limits. 
Additionally the relative normalization of the two 
Gaussians can be introduced as a free parameter 
under the natural constraint that the sum of the two 
must normalize to 1. 
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Abstract 

A general method for producing efficient algorithms 
to evaluate finite Fourier transforms that fully utilize 
symmetry to reduce both computing time and space 
requirements is described. The method is applicable 
to all space groups. The resulting algorithms retain 
the ' N  log N '  behavior of the fast Fourier transform 
while reducing the size of the data to approximately 
an asymmetric unit. The algorithm for the p3 and P3 
groups is shown. 

0108-7673/88/040467-12503.00 

I. Introduction 

The standard method for efficiently computing three- 
dimensional finite Fourier transforms is by Cooley- 
Tukey and Good-Thomas  algorithms. Ten Eyck 
(1973) in his pioneering work on crystallographic fast 
Fourier transforms showed how certain groups of 
crystallographic symmetries could be combined with 
such algorithms to reduce the computational burden. 
There are two main features of the Ten Eyck 
algorithms: (1) the groups of symmetries must carry 
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